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A wireless ad hoc network is introduced that enables inter-robot communication and
shared computation among multiple robots with PC/104-based single board computers run-
ning the real-time application interface patched Linux operating system. Through the use of
IEEE 802.11 ad hoc technology and User Datagram Protocol, each robot is able to exchange
data without the need of a centralized router or wireless access point. The paper presents
three key aspects of this novel architecture to include: 1) procedures to install the real-time
application interface patched operating system and wireless ad hoc communication protocol
on a multiple robot system; 2) development of a Simulink® library to enable intercommuni-
cation among robots and provide the requisite software-hardware interfaces for the onboard
sensor suite and actuator packages; 3) methods to rapidly generate and deploy real-time exe-
cutables using Mathwork’s Real-Time Workshop™ to enable an autonomous robotic system.
Experimental test results from the Spacecraft Robotics Laboratory at the Naval Postgrad-
uate School are presented which demonstrate negligible network latencies and real-time
distributed computing capability on the Autonomous Spacecraft Assembly Test Bed. A com-
plete manual is also included to replicate the network and software infrastructures described
in this work. Also, the developed Simulink® library can be requested from the authors.

Nomenclature
CF compact flash (removable memory drive)
COTS commercial off-the-shelf
DoF degrees of freedom
FOG fiber optic gyro
FPGA field programmable gate array
GNC guidance, navigation, and control
GUI graphical user interface
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IP internet protocol (IP address: a unique address that certain electronic devices use to identify and
communicate with each other on a computer network using the Internet Protocol standard)

MAG magnetometer
N number of robots
NPS Naval Postgraduate School
OS operating system
PD proportional derivative
PWM pulse width modulation
RTAI real-time application interface
SRL Spacecraft Robotics Laboratory
UDP user datagram protocol

I. Introduction

REAL-TIME control and relative navigation of multiple agent systems is a widely studied topic with respect
to autonomous computing and telecommunication [1–6]. Many multi-robot space missions [6–8] demand

autonomous onboard processing capability, which is critical both for planetary exploration, and on-orbit maneu-
vering when the up/down link capabilities may be limited [6–9]. Our primary research focus is on autonomous
spacecraft proximity maneuvers as orbital rendezvous and assembly [10–14].

The scalability of both the computation environment and the communication infrastructure is an additional research
focus for multiple autonomous vehicle systems.

The use of wireless ad hoc networking has become increasingly important in various technical areas, especially
for multiple autonomous vehicle systems [15–22]. This type of networking enables fast intercommunication among
vehicles, without the need of an access point or a centralized hub for data exchange. The National Aeronautics and
Space Administration (NASA) has begun to look at this type of communication protocol for space exploration and the
potential of this technology appears to be very promising [23–25]. In particular, Ref. [23] highlights the possibility
of exploiting commercial off-the-shelf (COTS) devices quickly to assemble a space vehicle’s computation and
telecommunication infrastructure. Ref. [26] proposes to replace fly-by-wire technology for future space missions
with fly-by-wireless philosophy.

The main goal of this research is to develop a readily usable and easily scalable real-time operating environment for
a system of multiple robots. The vehicles are intended to communicate among each other wirelessly and to perform
requisite sensor suite communication, control computation, and actuation in real time.Although designed specifically
for experimental simulations of multi-spacecraft proximity operations at the Spacecraft Robotics Laboratory (SRL)
of the US Naval Postgraduate School (NPS), the real-time operating environment presented is general in scope
and can be applied to virtually any multirobot system. The spacecraft simulators in our test bed must wirelessly
communicate among each other to closely represent an autonomous on-orbit environment of multiple cooperating
spacecraft. Furthermore, to develop fault-tolerance and shared communication capability, a wireless ad hoc network
environment based on IEEE 802.11 technologies with no access point or main router is selected. In particular, a static
internet protocol (IP) address is given to each robot in the Wi-Fi ad hoc network, that acts to identify each robot and
allows for effective distributed computing.

The use of xPC Target™ by MathWorks™ as a real-time operating system (OS) is common in academic
research [27]. A key advantage of xPC Target™ is its seamless integration between Simulink� via Real-Time
Workshop™, which allows for rapid prototyping of navigation and control algorithms for real-time requirements.
Real-Time Workshop™ automatically generates C code from a Simulink� model and the corresponding executable
file for a xPC Target™ based computer. On the other hand, xPC Target™ has some disadvantages that include support
for a limited number of hardware components and no support for universal serial bus (USB) or Firewire devices.
Furthermore, the inaccessibility of its source code, owing to its proprietary commercial nature, makes it challenging
to add or modify drivers for unsupported hardware.

Real-time application interface (RTAI) Linux has been successfully used as an onboard real-time OS. RTAI is a
patch to the Linux kernel that allows for the execution of real-time tasks in Linux [28,29]. The RTAI Linux solution
is being widely exploited in several engineering areas [30–33]. In this work, we use RTAI Linux with a wide variety
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of hardware interfaces to include wireless ad hoc radio communication using user datagram protocol (UDP), RS232
interface with the sensor suite and power system and a PC/104 relay board for actuating compressed air nozzles.
RTAI Linux also allows for automatic generation of C code from Simulink� models through Real-Time Workshop™
with the executable file for the onboard computers being created outside MATLAB� by simple compilation of the C
code. This first advantage is strengthened by other features that make the RTAI Linux solution attractive. The Linux
OS (and related drivers, functions, packages, etc. . . .) is open source. This leads to a wide variety of possibilities with
respect to the design of device drivers and provides the developers with complete control over the OS. Additionally,
the Linux catalog of supported wireless cards and adapters, not to mention other important devices to any robotic
system such as cameras and motors, is extensive.

Another key advantage of using RTAI Linux is that it allows for rapid customization of the OS itself. The
RTAI Linux OS is installed on each robot’s PC104 and on a desktop computer, thus enabling seamless wireless
communication between each robot and the programmer.

Finally, the hardware that is used in our experimental test bed is COTS and reflects the latest challenges in the
aerospace industry for small spacecraft to demonstrate the capability to quickly assemble a flight ready system that is
capable of wireless intercommunication and power exchange [34]. In particular, RTAI Linux is installed on industrial
PC/104-based single board computers, while commercial USB wireless adapters and wireless pockets (converters
from wired Ethernet to radio signal) are used as network adapters. Additionally, all the sensors and actuators required
to measure and control the state of each simulator such as the Fiber Optic Gyro, magnetometer, an indoor positioning
system, and solenoid valve actuated thrusters are all COTS. The only exception to this is represented by the supersonic
nozzles which have been designed at the SRL [35].

The following are the main original contributions of this paper:
1 Development of an easily scalable software environment for real-time task execution for autonomous multi-

robot systems.
2 Design of a Wi-Fi ad hoc communication infrastructure that provides the capability of inter-robot data

exchange without the requirement of an external router.
3 Development of a Simulink� library composed of S-functions for rapid prototyping of GN&C algorithms

for Linux-based multi-agent systems.
4 Hardware in the loop testing of real-time distributed computing under RTAI Linux and UDP-based wireless

ad hoc network communication.
This paper is organized as follows. Section I describes the software architecture. Section II is dedicated to listing the
hardware components used on the robots and the test bed configuration. Section III deals with the Simulink� library
developed as interface between software and hardware. Section IV presents the experimental results of distributed
computing and finally Sec. V concludes the paper.

The material presented in the Appendix is suitable to build ready-to-use systems for a wide variety of multiple
robot applications. The developed software can be request from the authors.

II. Software Architecture
The proposed software architecture is comprises three layers: 1) hardware; 2) RTAI Linux; 3)Matlab�-Simulink�.
RTAI is a patch to the Linux kernel that provides the ability to make it fully preemptable [36], by acting on

the interrupt handling and scheduling policies. All standard Linux capabilities (such as access to network devices,
graphical display and windowing systems, file and data base systems, etc.) are maintained. For guidance, navigation
and control applications on robotic systems interactions between hardware and software must occur according to a
pre-established frequency that is governed by control system requirements. A generic Linux OS without real-time
computing capabilities can ensure a specified start-time for a specific task or process but it can not ensure that once
the task or process has begun that it will proceed at the required rate without being interrupted by other “more
pressing” processes as determined by the OS. Through the use of a real-time patch such as RTAI, these processes
are preempted, thus ensuring that a given task is executed in the specific order and according to the specific timing
that is required by the programmer.

RTAI provides a graphical user interface (GUI) called XRTAI-LAB. In our experience, however, the XRTAI-LAB
GUI is not completely reliable. Therefore it is not used in this research.

The Appendix assists in the preparation of the requisite software environment.

330



BEVILACQUA ET AL.

RTAI Linux maintains the advantageous feature of being one of the few possible target operating systems
when generating code from a Simulink� model through Real-Time Workshop™. Unlike xPC Target™, Real-Time
Workshop™ is used to only generate C code which is later compiled outside MATLAB�, by using the gcc com-
piler in a Linux terminal. The Appendix provides the procedures to generate the executable file on the desktop
computer, log-in wirelessly to the onboard PC/104 on the simulator, download the executable and then execute the
real-time task.

Fig. 1 Representative sketch of the autonomous spacecraft assembly test bed.
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III. Hardware Selection and Description
Figure 1 depicts the test bed at the SRL. Main components and their interfaces are illustrated onboard the robot

at the bottom of the sketch. The configuration and the software architecture presented here is in principle scalable to
an arbitrary number of robots.

Figure 2 presents the three robots currently operational in the Spacecraft Robotics Laboratory at the Naval
Postgraduate School.

Figure 3 depicts the main hardware components with respect to data exchange command and data handling
subsystem on each of four spacecraft simulators at the SRL.Arrows are used to illustrate how the different components
are assembled and connected to each other.

Table 1 lists the hardware components by name and part number, the manufacturer and a description of the key
characteristics.

To set up a wireless ad hoc network it is necessary to determine a properly supported device with respect to the
necessary drivers and firmware packages for the given OS. Ref. [37] provides an exhaustive list of wireless adapters
(USB, PCI cards, etc.. . .) with the indication of their compatibility with Linux. In the initial stages of this research
effort, an extensive trade study was performed using Ref. [37] as a primary reference to determine a wireless adaptor
that would be hardware and software compatible with an RTAI Linux-based PC/104 real-time computing solution.
The outcome of this study first drove the component selection to a USB wireless adapter owing in most part to its
space and power saving qualities, ease of installation and removal, and its direct compatibility with any PC/104
motherboard with at least one USB port.

Unfortunately, during full-scale real-time experimental testing, it was discovered that RTAI does not properly
handle USB interrupts, requiring a USB device to exit out of the real-time computing process, execute any required
USB instructions, and then reenter the real-time process.

This strong limitation resulted in an extended search for other wireless adapter alternatives and revolved around
the possibility of converting a standard RJ-45 10Base-T Ethernet port to a wireless radio signal. The D-Link Pocket

Fig. 2 Three spacecraft simulators, part of the autonomous spacecraft assembly test bed at the NPS Spacecraft
Robotics Laboratory.
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Fig. 3 Critical components of each spacecraft simulator.

Wireless meets this requirement with a 5 Volt power requirement and allows the user to mode select among router,
access point or ad hoc client.

The wireless ad hoc network not only provides for inter-robot communication and experimental data logging on
a host desktop computer, it also enables the user remotely to log into the onboard PC/104s from this host computer
and make modifications to the system, load executable files, and run and stop execution of real-time tasks. As the
host computer does not have real-time computing requirements, it can use the USB wireless adapter selected in the
original trade study to communicate with the network. The steps to install and setup the wireless ad hoc network
under Linux are provided in the Appendix.

The wireless ad hoc network capability of each robot is not only used to communicate with other robots. It is also
necessary to receive its own absolute position in the laboratory as sensed by the Metris® iGPS indoor positioning
system. The iGPS system is a commercial system that requires a Windows-based computer to process and convert the
raw data, streaming from the receiver via RS232 serial interface, into position measurements. Therefore, a wireless
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Table 1 Hardware description

Component name (part No.) Manufacturer Description

PC/104+ motherboard Advanced Digital Logic SmartCoreT3-400, 400 Mhz central
processing unit (CPU)

SDRAM256-PS
Extreme IV compact flash card SanDisk 8 Gbyte capacity
20 relay board (IR-104-PBF) Diamond Systems High Density Opto-isolated I/O Board
8 serial port board (MSMX104+) Advanced Digital Logic –
Firewire PC/104 board Embedded Designs Plus IEEE1394 Card with 16 Bit PC104
Compact wireless-G USB adapter Linksys 54Mbps 802.11b/g
Wireless pocket router/AP (DWL-G730AP) D-Link 2.4 Ghz 802.11 g, RJ-45 to wireless
Solenoid valves Predyne 2 way, 24VDC, 2 Watt
Fiber optic gyro (DSP-3000) KVH 100 Hz, Asynchronous, RS-232
Magnetometer (MicroMag-3Axis) PNI Asynchronous, RS-232
DC/DC converters (EK-05 battery controller

and regulator +DC1U-1VR 24V DC/DC
converter)

Ocean Server 3.3, 5, 12, 24 Volts outputs. Main board is
equipped with a batteries status controller.

Battery Inspired Energy Lithium Ion rechargeable battery −95 Whr
iGPS indoor positioning system Metris Capable of < 0.005 m precision

server is installed next to the onboard receiver to convert the serial signal to wireless TCP/IP. An external Windows-
based computer running the propriety software program receives these raw data through a standard wireless PCI
adapter, processes the data and then sends the Cartesian coordinates over the wireless ad hoc network in UDP format
to the simulators. The UDP data are packed using a Python program. This is the only connection to a Windows
computer and the only off-board processing that is done on the test bed with the data logging and telecommanding
being performed over the wireless ad hoc network on a Linux-based desktop computer.

RTAI Linux is installed on each robot’s PC/104 via 8 Gbyte compact flash (CF) cards. The steps to move the OS
from the desktop computer and make it bootable on the CF are detailed in the Appendix. The procedures can be
quickly duplicated enabling a generic number of N robots to be equipped with the same OS. The main advantages
of using CFs over traditional hard disk drives are: reduced size, low power consumption, no moving parts, very good
read/write performance, and extreme portability.

With the focus of this paper being on the software and wireless ad hoc infrastructure, additional clarification and
qualification of the hardware choices listed in Table 1 can be found in Ref [38].

IV. Real-Time Software for Sensors and Actuators
Figure 4 shows the Simulink� library developed to communicate with the hardware. Figure 4 reports the individual

blocks’ masks allowing the user to set up the main parameters for each hardware device. Each of the developed
Simulink� blocks uses an S-function construct to integrate C code into the models. The Appendix collects some
notes for the users. One important issue that arose while using Simulink� is the fact that the clock and ramp generator
blocks do not work once compiled and executed under RTAI Linux and can cause the onboard PC/104 to freeze or
crash. This is related to the task execution hierarchy which causes the system to exit the real-time RTAI layer to
accomplish the requisite tasking and then returning. To alleviate this problem, we developed a new clock generation
block which provides real-time clocking without interfering in the real-time computational process.

The following explains the main inputs to the S-function blocks’ masks in Fig. 5 and the input/output (I/O) signals
for the blocks in Fig. 4. For the three blocks using COM ports (RS232), i.e. the ones in Fig. 5 a, b and i, the same
parameters encountered in xPC Target™ RS232 blocks are required. Throughout the discussion that follows, the
bold terms are the names of the parameters, block’s inputs/outputs and block’s names:

LIST OF INPUTS AND OUTPUTS (from Fig. 4)
a. KVH DSP-3000 Fiber Optic Gyro: RS232 source block. It provides the angular rate (rate) and a flag. The

flag is either 0 (bad data or no available data) or 1 (good data). The flag indicates whether the message’s
parsing has been successful or not.
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Fig. 4 Simulink� Library developed for Linux.

b. PNI Micro-Mag 3-Axis Magnetometer: RS232 source block. It provides an angle (angle) and a flag. The
flag is either 0 (bad data or no available data) or 1 (good data). The flag indicates whether the message’s
parsing has been successful or not. Despite the capability of this device to provide three angles we are parsing
out only one angle, setting the magnetometer in a single axis configuration. This is for simplicity and because
one angle is what the SRL robots need to measure.

c. Metris iGPS Position Measurement: UDP source block. It provides planar position coordinates (Y, X) in
meters and a flag. The flag is either 0 (bad data or no available data) or 1 (good data).

d. Diamond IR-104-PBF Relay Board: Output bit sink block. The input varies dynamically with the number
of channels the user desires to activate (Fig. 5d, only channel 1 is activated in the figure). 1 at input means
relay on (circuit is closed, allows power to go through), 0 means off (opens circuit, no power through).
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e. Linux Unpack: Data type conversion I/O block. The packed UDP binary data are the input while the unpacked
data are the output, after the data have been unpacked according to the definitions in the mask.

f. Linux UDP Send Binary: UDP sink block. The input is the packed value sent as a UDP signal.
g. Linux Pack: Data type conversion I/O block. The unpacked data are the input while the packed UDP binary

signal is the output after the data have been packed according to the definitions in the mask.

Fig. 5 Simulink� Masks with respective input parameters for the blocks of Fig. 4.
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Fig. 5 Simulink� Masks with respective input parameters for the blocks of Fig. 4 (Continued).

h. Linux UDP Receive Binary: UDP source block. The input is the packed value coming as a UDP signal.
Flag is either 1 or 0 according to the case of receiving or not receiving data.

i. Ocean Server Batteries Controller: RS232 source block. It provides an average percent charge of the
batteries connected to the DC/DC converters (charge %) and a flag. The flag is either 0 (bad data or no
available data) or 1 (good data). The flag indicates whether the message’s parsing has been successful or not.
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j. Clock: Source block that outputs the current time from the beginning of the task’s execution.
k. Linux Firewire Frame Grabber: Firewire-based source block. It outputs the captured image (Image) as a

collection of bytes which represent the light intensity of the pixels. It also outputs the size of the image in
bytes.

l. Linux Image Processor: Data type conversion I/O block. Image is the output image of the capture block
while x and y are the normalized coordinates of the brightest three points in the image. The ranges of x and
y between -1 and 1, being (0, 0) the center of the image. Flag is zero if no new measurement is available, 1
is a new one is computed.

LIST OF PARAMETERS (from Fig. 5)
a. KVH DSP-3000 Fiber Optic Gyro: Port: Serial port number. Baud rate: Baud rate of the specific

device connected to Port (from device manual). Number of data bits: Number of data bits in message
from device (from device manual). Number of stop bits: Number of stop bits in message from device (from
device manual). Parity: Parity check on message from device (from device manual). Sample Time: Sampling
time interval for reading/writing to the Port.

b. PNI Micro-Mag 3-Axis Magnetometer: Port: Serial port number. Baud rate: Baud rate of the specific
device connected to Port (from device manual). Number of data bits: Number of data bits in message from
device (from device manual). Number of stop bits: Number of stop bits in message from device (from device
manual). Parity: Parity check on message from device (from device manual). Sample Time: Sampling time
interval for reading/writing to the Port.

c. Metris iGPS Position Measurement: IP address of your PC: IP address of the computer receiving data. It is
needed to bind a UDP port. The iGPS program, being specific for receiving two doubles (the two coordinates
in the laboratory), does not allow changing this value. Sample Time: Sampling time interval for checking
new data availability at the UDP port.

d. Diamond IR-104-PBF Relay Board: Channel Vector: Relays to be commanded (from 1 to 20, they
do not have to be consecutive). Reset Vector: Status at which the relays are left when the execution is
terminated. Initial Value Vector: Initial status of the relays at beginning of execution. Sample Time: Sam-
pling time interval at which the relays are commanded. Base address: base hardware address of the relay
board.

e. Linux Unpack: Output port dimensions: Number of elements to unpack the incoming message into.
Output port data types: Data types of the elements to unpack the incoming message into.

f. Linux UDP Send Binary: IP port address to send to: IP address of the remote computer receiving UDP
data. Remote IP port to send to: IP port to which the remote computer will bind. Then, it has to be equal
to the value of the receiving party (Fig. 5h). Sample Time: Sampling time interval for sending data through
the UDP port.

g. Linux Pack: Input port data types: Data types of the elements to be packed in a single message.
h. Linux UDP Receive Binary: IP port to receive from: IP port to bind. This value has to be the same as the

sending party. Output port width (number of bytes): The receive UDP needs to know how many bytes
are contained in each packet. Sample Time: Sampling time interval for checking new data availability at the
UDP port.

i. Ocean Server Batteries Controller: Port: Serial port number. Baud rate: Baud rate of the specific
device connected to Port (from device manual). Number of data bits: Number of data bits in message
from device (from device manual). Number of stop bits: Number of stop bits in message from device (from
device manual). Parity: Parity check on message from device (from device manual). Sample Time: Sampling
time interval for reading/writing to the Port.

j. Clock: Sample Time: It must be the main model sampling time (the one set up under configurations of the
Simulink� model).

k. Linux Firewire Frame Grabber: Output Port Width: Number of bytes required for the image to be
grabbed. Sample Time: Sampling time for requiring a new image from the camera. This block may need
to be scheduled at a lower frequency than the main control system, accordingly with the CPU computing
capabilities, to avoid overload and lose of real-time execution of the guidance, navigation, and control (GNC)
algorithms.
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l. Linux Image Processor: This block does not require a mask. This block may need to be scheduled at a
lower frequency than the main control system, accordingly with the CPU computing capabilities, to avoid
overload and lose of real-time execution of the GNC algorithms.

V. Experimental Results
This section presents the results of three real-time experimental test runs. In all of the tests, four PC/104 computers

are running in real-time using RTAI Linux, exchanging data over the established Wi-Fi ad hoc network to control one
fully operational autonomous robot. Only one of the four computers is physically mounted on board the robot (see
Fig. 6). The executable files are obtained from Simulink� models implemented using the library described in the

Fig. 6 Representative sketch of the real-time test data exchanging and distributed computing.
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previous section. The details of the GN&C algorithms are beyond the scope of this work and will not be discussed
here. For further details on the GN&C algorithms refer to [10] and [11]. A video capture of the experimental tests
is available (videos\DistributedSquare.MOV for test 1, videos\DistributedInterruptedValvesOff.MOV for test 2 and
videos\DistributedInterruptedValveOn.MOV for test 3).

The first test shows the real-time distributed computing capability over the ad hoc Wi-Fi network. A sample closed
trajectory maneuver is completed in test 1. Test 2 and test 3 present the same experiment with an interruption of
the wireless communication between the PC/104 performing the thruster mapping and the maneuvering robot to
explicitly demonstrate the loss of control on the robot and further prove the interdependency of the computers over
the Wi-Fi link during distributed computing.

A. Test 1
The main goals of the first test are to prove RTAI Linux’s real-time capability for the developed system (negligible

latency) and the negligibility of the delays in communication with the Wi-Fi ad hoc network during distributed
computing. Refer to the video videos\DistributedSquare.MOV for the test visualization.

Figure 6 describes the data exchanging among the PC/104s and the real-time tasks each of them is executing for
the presented test. The tasks running onboard each computer are sampled at 100 Hz (sample time is 0.01 s). During
the experiment, the robot maneuvers to follow a one meter side square while maintaining zero attitude and angular
velocity throughout. Also, the velocity along each side of the square is commanded to be one centimeter per second
and at rest at the corners.

Each PC/104 executes the compiled version of a Simulink� model and each of the models interfaces to the others
(see Fig. 6) via Wi-Fi UDP. Furthermore, each PC/104 sends back to the desktop PC its sensitive data so that the
whole execution can be monitored and the telemetry stored. The robot’s onboard time is broadcast to the navigation,
control and thruster mapping tasks, so that these last three tasks actually start computing data only when the robot

Fig. 7 Trajectory followed by the operational robot during distributed computing. The position is sensed via the
iGPS indoor system on the robot (IP 170.160.1.4) and collected wirelessly on the desktop PC (IP 170.160.1.7).
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Fig. 8 Controls commanded to the solenoid valves. The commands are computed by the thruster mapping software
on PC104 with IP 170.160.1.3 and received by the robot (IP 170.160.1.4). The commands are also collected wirelessly
on the desktop PC (IP 170.160.1.7).
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requires them, i.e. only when it starts broadcasting time and sensor data. Figure 7 presents both the commanded
trajectory and the logged trajectory from the robot. Figure 8 shows the on/off thruster commands sent to the robot
by the thruster mapping PC/104.

The results of the presented test demonstrate the correct functioning of the developed real-time Simulink� blocks
that interact with the onboard sensors and actuators. Furthermore, the four intercommunication pathways required
to command the actuators on the robot, starting from the current sensed position and attitude, occur in less than
0.01 seconds. This is demonstrated by the performed maneuver, whose accuracy is satisfactory. In other words the
wireless network’s delays are negligible as also is the data loss in Wi-Fi communication.

B. Test 2
This test presents the same characteristics of Test 1. To show the PC/104 interdependency while per-

forming distributed computing, the wireless connection between the commanding PC/104 (IP 170.160.1.3)
and the maneuvering robot (IP 170.160.1.4) is manually interrupted by disconnecting the Ethernet cable
(videos\DistributedInterruptedValvesOff.MOV). In particular, the communication loss implies no control on the
robot because it no longer receives any commands for the solenoid valves. The disconnection occurs when all the
valves are off in this test and thus the simulator drifts away uncontrolled.

C. Test 3
This test presents the same characteristics of Test 1. Once more, to show the PC/104 interdependency while

performing distributed computing, the wireless connection between the commanding PC/104 (IP 170.160.1.3)
and the maneuvering robot (IP 170.160.1.4) is manually interrupted by disconnecting the Ethernet cable
(videos\DistributedInterruptedValveOn.MOV). However, in this test, the disconnection occurs when one valve is
still on causing the robot to enter an uncontrolled spin.

VI. Conclusion
This paper presents the implementation details of a wireless ad hoc communication network and the software

infrastructure for real-time maneuvering of multiple robotic systems. The approach presented is applicable in general
to any multi-robot system. Key aspects of this generality include the use of a wireless communication network based
on the IEEE 802.11 standard and the exportability and customizability of the Simulink� C-code-based S-functions.
RTAI Linux is chosen as the real-time OS with its advantage of being able quickly to use Simulink� models using
Real-Time Workshop™ for automatic generation of the real-time executable files. A Simulink� library has been
developed as interface between software and hardware.

In particular, the developed software has been applied to the spacecraft simulators of the Autonomous Spacecraft
Assembly Test Bed at the Spacecraft Robotics Laboratory of the Naval Postgraduate School.

To prove the real-time capability of the developed software infrastructure, i.e. the dedicated libraries for the
hardware and the wireless networking in real-time, three experimental tests are presented. In the first test, real-
time distributed computing over the Wi-Fi network is demonstrated by controlling one maneuvering robot through
a parceled out framework of different wirelessly connected PC/104s running the navigation, control, and thruster
mapping algorithms. The real-time OS latencies and the wireless communication delays and data loss result to be
negligible even with four simultaneous Wi-Fi data exchange being required within a sample time of 0.01. The second
and third tests reproduce the first one with the addition of the manual disconnection of the wireless link between the
commanding PC/104 and the maneuvering robot to demonstrate the effect of control loss on the maneuvering robot
and distributed computing interdependency.

The configuration and the software architecture presented here is in principle scalable to an arbitrary number of
robots.

The material in the included Appendix is suitable to build ready-to-use systems for multiple robot applications.
Furthermore, the Simulink library is available upon request from the authors.

VII. Appendix
The following is the procedure followed for the preparation of the real-time OS: RTAI Linux. It applies to a

desktop PC. The system copying on smaller drives and in particular to the compact flashes is given as well. The
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installation of Matlab and the whole process to generate C code from a Simulink model is described. The steps for
using Real-Time-Workshop, and finally obtaining an executable file to run under RTAI are reported. The remote
wireless connection from the desktop to the PC104 to upload executable files and run them is illustrated.

Despite the strong limitations of the xrtailab GUI, the installation and test process for it is also included.
The Simulink library is publicly available for research purposes upon request from the authors.
The Debian 2.6.19 kernel release is chosen, owing to its streamlined and basic nature. However, because it is

so streamlined, some required packages such as a C compiler and other specific ones required by RTAI must be
added. For this reason, those who choose to explicitly follow the installation instructions outlined in the Appendix
will find several additional packages downloaded after the initial Debian installation. In setting up the RTAI patch,
we initially referred to the manuals of [36] and [39] with particular emphasis on the generic instructions pertaining
to the required software packages (Mesa, Comedi, Comedilib, etc.).

In beginning the installation, the first step is to download a stable release of Debian (kernel 2.6.18) from which it
is possible to access, download and compile the remaining packages, and finally the 2.6.19 kernel which is ultimately
patched with RTAI. During the first installation and for any testing of the system to include debugging errors, etc., it
is extremely more expeditious to use high end desktop computer vice the onboard PC/104 single board computers.
Once the OS is fully prepared for the selected PC/104 processor, it is sufficient to simply duplicate it to a removable
drive such as a compact flash that can be later connected to the onboard PC/104. This final step of duplication can
also be performed on the desktop computer given the requisite card reader. The use of a fast desktop computer for
compilation cannot be stressed enough as in most circumstances it can help decrease the time to compile by an
order of magnitude. Some attention to computer architecture, especially the microprocessor, is important during this
process As the Linux kernel and software tools can be compiled to a specific architecture and thus be potentially
un-executable on a different computer.

A. Installation on desktop PC
1) Start Linux Installation by CD install of Debian (e.g. http://www.debian.org/CD/netinst/).
2) Be super user (root) for all the following steps, unless otherwise specified.
3) Install required packages: (to avoid being asked to use the Debian disk go to Desktop, Administration,

Software Properties and remove the cdrom as source for packages)
>> apt-get install gcc-3.4
>> ln –s /usr/bin/gcc-3.4 /usr/bin/gcc
>> ln –s /usr/bin/gcc-3.4 /usr/bin/g++
>> apt-get install build-essential
>> apt-get install libncurses-dev
>> apt-get install x11proto-xext-dev
>> apt-get install automake
>> apt-get install autoconf
>> apt-get install libtool
>> apt-get install bison
>> apt-get install doxygen
>> apt-get install initrd-tools
>> apt-get install libxmu-dev
>> apt-get install libjpeg-dev
>> apt-get install libgtk2.0-dev
>> apt-get install xlibmesa-gl
>> apt-get install xlibmesa-glu
>> apt-get install xlibmesa-glu-dev
>> apt-get install xlibmesa-dri
>> apt-get install mesa-utils
>> apt-get install libgl1-mesa-swrast-dev
>> apt-get install ssh
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4) Install Mesa
>> cd /usr/local/src
Visit http://www.mesa3d.org and download MesaLib-6.5.3.tar.bz2
>> bunzip2 /home/(user name)/Desktop/Downloads/MesaLib-6.5.3.tar.bz2
>> cp/home/(user name)/Desktop/Downloads/MesaLib-6.5.3.tar.
>> tar –xvf MesaLib-6.5.3.tar
>> cd Mesa-6.5.3
>> make realclean
>> make linux-x86
>> make install

5) Install EFLTK
>> cd /usr/local/src
>> apt-get install subversion
>> apt-get install gettext
>> apt-get install flex
>> svn co https://ede.svn.sourceforge.net/svnroot/ede/trunk/efltk
>> cd efltk
>> autoconf
>> ./configure –disable-mysql –disable-unixODBC
>> ./emake
>> ./emake install
>> pico –w /etc/ld.so.conf
Add /usr/local/lib and then save the file (CNTL-X, Y to save question)
>> /sbin/ldconfig
>> cp efltk-config bin/

6) Install Comedilib
>> cd /usr/local/src
Visit http://www.comedi.org/download/ and download comedilib-0.8.1.tar.gz
>> gunzip /home/(user name)/Desktop/Downloads/comedilib-0.8.1.tar.gz
>> cp/home/(user name)/Desktop/Downloads/comedilib-0.8.1.tar.
>> tar–xvf comedilib-0.8.1.tar
>> cd comedilib-0.8.1
>> sh autogen.sh
>> ./configure –sysconfdir=/etc/
>> make
>> make install
>> make dev

7) Download Debian kernel 2.6.19
Visit http://www.kernel.org/pub/linux/kernel/v2.6 and download linux-2.6.19.tar.gz
>> cd /usr/src
>> gunzip /home/(user name)/Desktop/Downloads/linux-2.6.19.tar.gz
>> cp /home/(user name)/Desktop/Downloads/linux-2.6.19.tar.
>> tar –xvf linux-2.6.19.tar
>> mv linux-2.6.19 linux-2.6.19-rtai
>> ln –s linux-2.6.19-rtai linux

8) Install RTAI
>> cd /usr/src
Visit https://www.rtai.org/RTAI/ and download rtai−3.5.tar.bz2
>> bunzip2 /home/(user name)/Desktop/Downloads/rtai-3.5.tar.bz2
>> cp /home/(user name)/Desktop/Downloads/rtai-3.5.tar.
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>> tar –xvf rtai-3.5.tar
>> ln –s rtai-3.5 rtai

9) Patching the kernel and compiling
>> cd /usr/src/linux
>> patch –p1 < /usr/src/rtai/base/arch/i386/patches/hal (TAB to match version to 2.6.19)
>> cp /boot/config-2.6.18-5-686 .config
>> make oldconfig (Answer default option for each question)
>> make menuconfig
-Code maturity level options: select “Prompt for development. . .”
-General Setup: “Local Version”. . ., enter -rtai
-Loadable Module Support: select “Enable Module Support”, “Module unloading” and “Automatic Module
Loading”. Unselect “Module versioning support”.
-Processor Type and Features: deselect “Symmetric multi-processing support”, “subarchitecture” has to be
PC compatible. Select “Processor Family” according to PC. Select “Preemption Model” and select pre-
emptible kernel (low latency desktop). Unselect “Local APIC support on uni processors” and have “High
memory Support” (4 Gb). Unselect “Use Register Arguments”.
-Power Management: totally unselected. ACPI, APM and CPU unselected.
-Device Drivers: unselect “Memory Technology Device”, “Parallel Port Support”, “Multiple Devices Driver
Support”, “ISDN support”, “Telephony support”. “Input device support” has to have mouse selected. In
“Character Devices” select /dev/agpart/ AGP support and Direct Rendering Manager. . . . Being still in Char-
acter Devices go under “serial drivers” (THIS STEP IS NEEDED TO USE THE PC104 8 PORTS SERIAL
BOARD). Select 8250/16550 and compatible serial support. Maximum number of 8252/16550 serial ports
→16. Number of 8250/16550 serial ports to register at run time →16. Select Extended 8250/16550 serial
driver options and support for sharing serial interrupts.
Back into Device Drivers unselect “I2C support”, “Multimedia devices”, “Graphics Support”. Sound and
USB support enabled as modules.
-File Systems: select Ext3.
>> make
>> make modules_install
>> make install
>> pico –w /boot/grub/menu.lst
Change default to 2 (beginning of file).
Insert, right before END DEBIAN AUTOMAGIC KERNELS LIST (bottom of file) the following:
title Debian GNU/Linux, kernel 2.6.19-rtai
root (hd0,0)
kernel /boot/vmlinuz-2.6.19-rtai root=/dev/hda1 irqpoll ro
initrd /boot/initrd-2.6.19-rtai
savedefault
title Debian GNU/Linux, kernel 2.6.19-rtai (single-user mode)
root (hd0,0)
kernel /boot/vmlinuz-2.6.19-rtai root=/dev/hda1 ro single
initrd /boot/initrd.img-2.6.19-rtai
savedefault
(NOTE: the irqpoll instruction is needed to access the 8 serial ports PC104 board)
>> mkinitrd –o /boot/initrd-2.6.19-rtai 2.6.19-rtai
>> reboot

10) RTAI 1st Pass
>> cd /usr/src/rtai
>> make menuconfig
Menu General: Verify default directories:
∗installation directory /usr/realtime
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∗Kernel source directory /usr/src/linux
Menu General: optionally select RTAI documentation
Menu Machine (x86): adjust number of CPUs to 1
>> make
>> make install
>> pico –w /etc/profile
Add “:/usr/realtime/bin” to both PATH=lines

11) Install Comedi
>> cd /usr/local/src
Visit http://www.comedi.org/download/ and download comedi-0.7.75.tar.gz
>> gunzip /home/(user name)/Desktop/Downloads/comedi0.7.75.tar.gz
>> cp/home/(user name)/Desktop/Downloads/comedi-0.7.75.tar.
>> tar –xvf comedi-0.7.75.tar
>> cd comedi-0.7.75
>> sh autogen.sh
>> ./configure –with-linuxdir=/usr/src/linux –with-rtaidir=/usr/realtime
>> make
>> make install
>> depmod -a
>> make dev
>> cp include/linux/comedi.h include/linux/comedilib.h /usr/include/
>> cp include/linux/comedi.h include/linux/comedilib.h /usr/local/include/
>> ln –s /usr/include/comedi.h /usr/include/linux/comedi.h
>> ln –s /usr/include/comedilib.h /usr/include/linux/comedilib.h
>> cd /usr/src/rtai
>> make menuconfig
Menu Add-Ons: Select Comedi support over LXRT and change path to be “/usr/local/src/comedi-0.7.75”
Menu RTAI Lab: Select RTAI Lab and change path to be “/usr/local/src/efltk”
>> make
>> make install
>> make dev
>> insmod /usr/realtime/modules/rtai_hal.ko
>> insmod /usr/realtime/modules/rtai_up.ko
>> insmod /usr/realtime/modules/rtai_fifos.ko

12) RTAI tests
>> cd /usr/realtime/testsuite/kern/latency
>> ./run
>> cd ../preempt
>> ./run
>> cd ../switches
>> ./run
If good results CNTRL-C. If they do not work do >> make dev under >> cd /usr/src/rtai and then try
again.

13) Modifying startup file
>> pico –w /etc/rc2.d/S99rc.local
At end of file, add:
sync
insmod/usr/realtime/modules/rtai_hal.ko
insmod/usr/realtime/modules/rtai_up.ko
insmod/usr/realtime/modules/rtai_fifos.ko
insmod/usr/realtime/modules/rtai_sem.ko
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insmod/usr/realtime/modules/rtai_mbx.ko
insmod/usr/realtime/modules/rtai_msg.ko
insmod/usr/realtime/modules/rtai_netrpc.ko ThisNode=”127.0.0.1”
sync
>>cd /usr/src/rtai
>>make dev
>> reboot

14) Retry three RTAI tests and also type
>> /usr/realtime/bin/xrtailab &, to see if the GUI pops up
If they don’t work do >> make dev under >> cd /usr/src/rtai and then try again.

15) Install and setting up Matlab
>> apt-get install x-window-system
>> mount /dev/(name of device: cdrom, etc. . . .)/ /mnt/
>> cd /usr/local/
>> mkdir matlab
>> cd matlab
>> pico –w license.dat
Paste Linux license file and save file
>> /mnt/install
OK to all default options. While installing, modify startup file as:
>> pico –w /etc/rc2.d/S99rc.local, add, at the end of the file:
cd /usr/local/matlab/etc
./lmstart –u (user name)
>>umount /mnt (eject cd/dvd)
After completed install,
>> reboot
Verify install
>> cd /usr/local/matlab/bin
>> ./matlab & (Matlab should open up; close it)
>> cd ..
>> mkdir rtw/c/rtai
>> cp –r/usr/src/rtai/rtai-lab/matlab/* /usr/local/matlab/rtw/c/rtai
>> cd/usr/local/matlab/bin
>> ./matlab &
in Matlab prompt go to/usr/local/matlab/rtw/c/rtai
-launch setup in Matlab window
-cd devices/ (just double click on the devices folder on the left list of Matlab)
-mex all files .c in the folder (e.g. mex sfun_comedi_data_read.c)
-cd .. (just go up in the Matlab list on the left)
-double click on rtai.tmf (this is needed to generate a code which can be compiled for rtai later)
-do a search on ANSI. Delete $(ANSI_OPTS) when found (there is only one)
-do a search on RTAIDIR. Delete everything after=and replace with /usr/realtime
-go to/usr/local/matlab/bin (still in Matlab).
-double click on mexopts.sh (this is needed for generating code from S-function blocks in Simulink
models)
-do a search on ANSI and delete -ansi when found (four different places)

16) First test on generating code from Simulink, compile it and execute it under RTAI in real-time
still with Matlab open go to /usr/local/matlab/rtw/c/rtai/examples
copy the test.mdl
Go to /usr/local/src
create new folder named tests
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paste the test.mdl in this folder
open test.mdl
Real-Time-Workshop: go to Simulation-Configuration Parameters in the scrolling down menu: select rtai.tlc
as target, generate code only, click generate
go back to root terminal
>> cd/usr/local/src/tests/test_rtai
>> make –ftest.mk (generates executable)
>> cd ..
>> ./test –v –f 5 (runs for 5 seconds)
NOTE for compiling code: if the make –f nameofthemodel.mk complains that it does not find nameofthe-
model.o file copy the nameofthemodel.c file where you are launching the make –f nameofthemodel.mk, or, in
Matlab, remember to include the folder containing nameofthemodel.c file in Matlab path before generating
code from Real-Time-Workshop.

17) Ad Hoc Wireless infrastructure installation (for desktop: USB wireless adapter)
>>apt-get install wireless-tools
Visit http://web.ralinktech.com/ralink/Home/Support/Linux.html and download 2008_0117_RT73_Linux_
STA_Drv1.1.0.0.tar.bz2
>> cd /usr/local/src
>> bunzip2 /home/(user name)/Desktop/Downloads/2008_0117_RT73_Linux_STA_Drv1.1.0.0.tar.bz2
>> cp /home/(user name)/Desktop/Downloads/2008_0117_RT73_Linux_STA_Drv1.1.0.0.tar.
>> tar –xvf 2008_0117_RT73_Linux_STA_Drv1.1.0.0.tar
>> cd 2008_0117_RT73_Linux_STA_Drv1.1.0.0/Module
>> cp Makefile.6 ./Makefile
>> chmod 755 Configure
>> make config
>> pico –w rtmp_main.c
CNTRL-W search for get_wireless_stats
Comment out (//) line:
netdev->get_wireless_stats=rt73_get_wireless_stats;
CNTRL-W search again for get_wireless_stats
Comment out (//) line:
netdev->get_wireless_stats=rt73_get_wireless_stats;
save the file with modifications
>> make all
>> mkdir /etc/Wireless
>> mkdir/etc/Wireless/RT73STA
>> cp rt73.bin/etc/Wireless/RT73STA
>> apt-get install tofrodos
>> dos2unix rt73sta.dat
>> cp rt73sta.dat /etc/Wireless/RT73STA/rt73sta.dat
>> pico –w /etc/Wireless/RT73STA/rt73sta.dat
Change lines
SSID=SRL2 (or appropriate name: name of the wireless network)
NetworkType=Adhoc
Channel = 11

18) Setting up startup file to load the wireless ad hoc network automatically at boot up
>> pico –w /etc/init.d/wireless_script
Add the following lines, but change net address as desired (first three numbers will represent the ad hoc
network)
/sbin/insmod/usr/local/src/2008_0117_RT73_Linux_STA_Drv1.1.0.0/Module/rt73.ko
/sbin/ifconfig rausb0 up
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/sbin/ifconfig rausb0 inet 170.160.1.1(chose a convenient IP) up
>> chmod 777 /etc/init.d/wireless_script
>> cd/etc/rc2.d
>> ln –s/etc/init.d/wireless_script S99Wireless
>> cd /etc/rc5.d
>> ln –s/etc/init.d/wireless_script S99Wireless
reboot and check the ad hoc installation through ifconfig and iwconfig

19) Ad Hoc Wireless infrastructure installation (for PC104: wireless pocket)
Connect the D-Link device to the Ethernet port.
Set client on the bottom switch of the device.
Follow the device manual to access it via a browser.
Choose ad hoc and an IP in the same family of the robots’ ones.
At this point the Ethernet port of the PC104 must be set up as static IP and the IP has to be the one we want
to assign to the robot:
>>pico –w /etc/network/interfaces
change dhcp to static
add the lines:
address (chosen IP)
netmask 255.255.255.0

B. Firewire camera
1) Download libdc1394-1.1.0 and libraw1394-1.2.0 from sourceforge website. Unzip and untar under

/usr/local/src.
2) In both libraries type:

>> ./configure
>>make
>>make install (libdc fails on some points, ignore them)

3) Copy libdc1394-control.so.13 from its location to /lib (find it by typing >>find –name “libdc1394-
control.so.13” -print). To be able to mex S-functions using the firewire libraries:

4) open Matlab and go to /usr/local/matlab/bin. Double click on mexopts.sh (this is needed for generating code
from S-function blocks in Simulink models) and add to line 52 (CLIBS-$ . . .) the following:
- ldc1394-control - lraw1394 - pthread (needed for the S-function developed for capturing images) - lsupc
++ (to be able to compile C++ code)

5) still in Matlab prompt go to /usr/local/matlab/rtw/c/rtai, double click on rtai.tmf and add to line 74 (SYSLIB)
the following:

- ldc1394-control - lraw1394 - pthread (needed for the S-function developed for capturing images) - lsupc
++ (to be able to compile C++ code)

C. Copying System on CF and make it bootable for PC104
After having connected the CF to the desktop PC hosting the complete RTAI Linux system it needs the following

steps:
1) Formatting CF and creating file system

>> fdisk /dev/hdc (hdc could be something different, it needs to match the device under which the CF is
shown. To check the name of the devices type fdisk –l /dev/h(or s, . . .)d. . . (a, b, c), to recognize them.)
>>d (delete previous partitions)
>>n (new partition)
>>p (create partition)
>>1 (this is the Linux partition, leave at least 2 Gb for the swap partition)
>>t (type of partition)
>>83 (Linux partition)
>>a (choose bootable partition)
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>>1
>>n (adding swap partition)
>>p
>>2
>>t
>>2
>>82 (swap partition)
>>w (writes changes and exits)
>>mkfs.ext3 /dev/hdc1 (hdc could be something different, it needs to match the device under which the CF
is shown, see previous note)
>>mkswap /dev/hdc2

2) Copy system to the CF and make it bootable
>>mount /dev/hdc1 mnt/
>> cd / (go to root in the desktop PC file system)
>>cp –av * mnt/ (* indicates any folder under the root of the desktop PC. Copy them one by one EXCEPT
for cdrom, media, proc, mnt )
>>mkdir /mnt/proc
>>cd mnt/
>> pico –w boot/grub/device.map
change hda or what it appears to the correct name for the device (hdc in our case). Save and exit.
>>pico –w boot/grub/menu.lst
change hda or what it appears to the correct name for the device (hdc in our case). Save and exit.
>>grub-install –root-directory=/mnt/ /dev/hdc (hdc could be something different, it needs to match the
device under which the CF is shown)

3) Boot kernel 2.6.18 from CF still connected on desktop PC.
4) Recompile kernel 2.6.19 for new processor (see steps in previous Section A of the Appendix, point 8. Just

run make menuconfig and change type of processor)
>>pico –w /etc/fstab and modify the swap row to be /dev/hdc2
NOTE: once the system is ready, the IP can be changed by simply accessing the wireless_script file (Section
A of the Appendix, point 18).

5) Move to the PC104 and boot up. Test RTAI (Section A of the Appendix, point 1812), it may need a
recompilation or a make dev under /usr/src/rtai (Section A of the Appendix, point 1018).

D. Connect to the PC104 from the desktop to upload executable files
1) Access a NON ROOT terminal (not super user) on the desktop PC.

>>cd /usr/local/src/tests (we are assuming the executable is under this folder)
>>sftp (user name of PC104…which should be the same of desktop, having copied the system)@IP PC104
>>put (name executable) (this command will copy the executable in the /home/user name folder of the
PC104)
>>exit
>>ssh (user name of PC104)@IP PC104

Now it is possible to become super user, we are logged into the PC104, it can be commanded from the
desktop: copying files, move them, execute real-time tasks, etc. . . .NOTE: we have noticed that sometimes
the real-time task remains hanging on the computer stack of processes if has not been called with the proper
options. This leads the system to not being able to re-run a process after it has been stopped. If this occurs
(the ps command, entered at the system prompt, lists the processes going on).

2) A faster way to maintain a continuous connection via ssh to the PC104, without opening a new one with sftp
to copy the files, is by:
>> cd /usr/local/src/tests (we are assuming the executable is under this folder)
>>scp (name executable) user_name_on_PC104@IP:/(path where to copy the executable on PC104)
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E. C S-functions notes for users
The following is the list of the C functions and C S-functions developed for the Simulink library under RTAI.

Each function needs to be mexed via the “mex” command in Matlab before the corresponding Simulink block is
available to use it. Once all functions are ready, it may be convenient to keep them and the mexed versions into a
Linux Include folder which needs to be in the Matlab list of paths so that the Simulink blocks can use them.

• rs232com.c: sets up the serial port number, baud rate, bit parity and so on. It is a generic C function which
is called by the specific C S-functions which interact with the different serial devices. It is run once for each
serial port, before the C S-functions start sending and receiving data via the RS-232 ports.

• dsp3000a.c: this is a C S-function, it sends a command to the Fiber Optic Gyro which allows it to stream the
angular velocity around one axis in degrees per second. Once the start command is sent the received message
is parsed into the required angular velocity. The communication is RS-232.

• micromag.c: this is a C S-function, it sends a command to the PNI Micromag which allows it to stream the
angle around one axis in degrees. Once the start command is sent the received message is parsed into the
required angle. The communication is RS-232.

• oceanserver.c: this is a C S-function, it sends a command to the Ocean Server battery controller which allows
it to stream the average charge status of the connected batteries. Once the start command is sent the received
message is parsed into the percentage charge. The communication is RS-232.

• ir104pbf.c: this is a C S-function, it sends either a “0” or a “1” to the selected relays in the PC104 relay board.
• linuxany2byte.c and linuxbyte2any.c: these are C S-functions, they respectively pack and unpack variables

to send them as data packets. The related pack and unpack Simulink blocks also need two .m functions called
mlinuxany2byte.m and mlinuxbyte2any.m, which have been taken from the original ones for XPCtarget.

• linuxudpbytereceive.c and linuxudpbytesend.c: these are C S-functions, they respectively receive and send
data packets through the UDP protocol. They use the socket C function.

• firewiregrabbingdma.c: this is a C S-function which allows for capturing images from a firewire camera
exploiting DMA (direct memory access) for fast data transfer.

• imageprocessing.c: this is a C S-function which allows for computing the position of up to three light spots
on a black background image. The points which have a light intensity above a given threshold are individuated
and their centroid is computed. The output is the xy position of the points in normalized coordinates (i.e.
between −1 and 1), where the center of the image is the origin of the reference frame. The computation takes
place calling the track.c C function.
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